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2002 Regional Meetings
Theresa Stiernagle, Bob Herman

Caenorhabditis Genetics Center, University of Minnesota, 250 Biological Sciences Center,
1445 Gortner Avenue, St. Paul, MN 55108-1095

2002 Regional Meetings

     East Coast Worm Meeting
     University of New Hampshire, Durham, NH
     14 - 16 June, 2002
     Organizer: John Collins, Department of Biochemistry and Molecular Biology, UNH. 

     European Worm Meeting
     Paestum, (Salerno), Italy
     18 - 21 May, 2002 

     The 3rd Japanese C. elegans Meeting
     Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
     6-8 August 2002
     Organizer: Shin Takagi 

     Midwest Worm Meeting
     St. Louis, Missouri
     28 - 30 June, 2002
     Organizer: Kerry Kornfeld 

     West Coast C. elegans Meeting
     UCSD, San Diego, California, USA
     10 - 13 August, 2002 

European C. elegans meeting 

The European C. elegans meeting 2002 will be held in Paestum, Italy from 
late afternoon of Saturday, May 18 until noon of Tuesday, May 21. 
The format of the meeting will be very similar to the previous ones. 

The organisers are : 
Paolo Bazzicalupo, Napoli, Italy (Local Organizer) 
Thierry Bogaert, Ghent, Belgium 
Barbara Conradt, Martinsried, Germany 
Mario de Bono, Cambridge, UK 
Marie-Anne Felix, Paris, France 
Rik Korswagen, Utrecht, The Netherlands

The deadline for abstract submission, registration and payment will be 
around mid March. We are going to set up a website for information and 
registration and its address will appear on Leon Avery website.
For more information, contact:  ewm2002@iigb.na.cnr.it
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New and improved pie-1-based vectors for maternal expression of 
transgenes
Ingrid D’Agostino, Kimberly Reese, Geraldine Seydoux

Dept. of Molecular Biology and Genetics, Johns Hopkins U. School of Medicine725 North
Wolfe Street / 515 PCTB, Baltimore MD 21205

We previously reported the construction of a pie-1-based vector for maternal
 expression of GFP fusion proteins in the germline and early embryos [Worm
 Breeder’s Gazette 15(5): 18 (February 1, 1999)]. This vector was modified by
 Praitis et al., 2001 for use in bombardment-mediated transformation. We have now
 created new versions of these vectors that are compatible with Invitrogen’s
 Gateway Recombination Cloning Technology. This technology bypasses the need for
 restriction enzymes and allows for the directional cloning of virtually any ORF
 into the pie-1 vectors. 

For expressing ORFs in the germline: 

pID2.02:        
unc-119 rescuing fragment/pie-1 promoter-gateway destination cassette B-3’utr of pie-1 
(suitable for bombardment, Praitis et al., 2001)

For expressing GFP-ORF fusions in the germline:

pKR2.40:         
pie-1 promoter-GFP- gateway destination cassette B -3’utr of pie-1
(suitable for complex arrays, Kelly et al., 1997)

pID3.01B:       
unc-119 rescuing fragment / pie-1 promoter-GFP- gateway destination cassette B - 3’utr of pie-1
(suitable for bombardment, Praitis et al., 2001)

Anyone interested in these vectors should write to Geraldine at gseydoux@jhmi.edu.



Rab gene nomenclature
Michael L. Nonet

Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint
Louis MO 63110

Rab genes are a large family of small GTPases that regulate vesicular trafficking in cells. In
vertebrates around 60 Rab genes have been identified. C. elegans contains at least 28 Rab
genes. Since the identification of vertebrate Rabs is now essentially complete, it is now
possible to relatively confidently define the vertebrate homolog of most C. elegans Rab genes
(Pereira-Leal and Seabra. 2001 J. Mol. Biol. 313 889-901). At the request of Jonathan
Hodgkin, I have now assigned formal names to the 22 Rab genes for which a clear vertebrate
homolog can be identified. Six remaining putative Rab genes have not been assigned names.
The assignments were made using the analysis of Pereira-Leal and Seabra as a foundation. I
then confirmed that the predicted coding regions were very likely accurate by identifying the C. 
briggsae homolog (which in most cases is >95% identical to the C. elegans protein). This
analysis revealed that several of the predicted Rab sequences in the database are incorrect
(specifically, rab-8, rab-33 and rab-39). The rab-28 gene structure remains questionable as the
gene is longer than most Rab genes by 25 amino acids and the N-terminal region is much less
highly conserved than the rest of the gene. However, the proper structure is not obvious from
my analysis. A table compiling general information on the protein sequences of both C. 
elegans and C. briggsae Rab homologs, representative cDNAs, and accession numbers for
both genomic and protein sequences is available at 
http://thalamus.wustl.edu/nonetlab/NMimages/genedatafold/Rabgenes.html

http://thalamus.wustl.edu/nonetlab/NMimages/genedatafold/rabgenes.html


Proposed C. elegans rab gene nomenclature

Proposed name cosmid name vertebrate homolog
rab-1 C39F7.4 Rab1
rab-2 F53F10.4 Rab2
rab-3 C18A3.6 Rab3

not present Rab4
rab-5 F26H9.6 Rab5
rab-6.1 F59B2.7 Rab6
rab-6.2 T25G12.4 Rab6
rab-7 W03C9.3 Rab7
rab-8 D1037.4 Rab8

not present Rab9
rab-10 T23H2.5 Rab10
rab-11.1 F53G12.1 Rab11
rab-11.2 W04G5.2 Rab11
rab-14 K09A9.2 Rab14
rab-18 Y92C3B.3 Rab18
rab-19 Y62E10A.9 Rab19
rab-21 T01B7.3 Rab21
rab-27 Y87G2A.4 Rab27
rab-28 Y11D7A.4 Rab28
rab-30 Y45F3A.2 Rab30
rab-33 F43D9.2 Rab33
rab-35 Y47D3A.25 Rab35
rab-37 W01H2.3 Rab37
rab-39 D2013.1 Rab39
Not assigned C33D12.4
Not assigned 4R79.2
Not assigned K02E10.1
Not assigned F11A5.4
Not assigned F11A5.3
Not assigned C56E6.2



The volume of freezing solution affects survival rate
Hitoshi Inada, Ikue Mori

Laboratory of Molecular Neurobiology, Division of Biological Science, Graduate School of
Science, Nagoya University, Nagoya 464-8602, Japan

Introduction

In reverse genetics using transposon or chemical mutagen, recovery from freezing stock is one
of the important steps to isolate deletion mutants. Effective isolation of deletion mutants
requires a "good" library, which has a high survival rate as same as a high mutation rate.
Although mutagenesis and PCR conditions have been optimized previously, the effect of
freezing condition on the survival rate has not been fully investigated. Here, we report that the
volume of freezing solution affects survival rate. Particularly, the survival rate dramatically
decreased in small volume.

Materials and Methods

N2 Bristol strain was used. Three or four adult worms were placed on a seeded 60 mm NGM
plate and cultured at 20 °C for 5 days until bacterial lawn became almost invisible. Eight or ten
plates were used for experiment 1 or experiment 2. Freshly starved L1 larvae (and adults)
were washed from the plates with M9 buffer into a 15 ml plastic tube. After low speed
centrifugation, the supernatant was removed and an equal volume of 2 x freezing solution was
added. The aliquot (worm solution) was mixed gently and transferred into 2 ml freezing vials. In
experiment 1, each set of vials contains various volume of worm solution, but all vials contain
about 50,000 worms. In experiment 2, each set of vials contains various volume of worm
solution, in which a density of worms was about 50 worms/µl. The vials were placed in holes
drilled into a styrofoam block without a lid. The block was placed in the -80 °C freezer for
overnight. In the next day, vials were thawed and the contents of each tube were plated onto a
seeded 60 mm NGM plate. Two days later, the number of surviving worms on each plate was
counted and the survival rate was determined (average±SD, n=3).

Results and Discussion

Small volume (100 µl) of worm solution showed the lowest survival rate (Experiment 1). The
survival rate of 100 µl was 4 times lower than those of 500 µl or 2000 µl. In experiment 1,
volume of worm solution and density of worms were both changed. In experiment 2, survival
rate were determined in various volumes with the same worm density to determine which
factor affects survival rate. Small volume (100 µ) also showed the lowest survival rate, and 500
µl of volume showed a relatively high survival rate but large SD (Experiment 2). Over 1000 µl
of volume resulted in stable and high survival rates. A relatively low density of worms seems to
give a better survival rate.

Standard freezing methods recommend that the rate of temperature decrease should be slow
(about 1 °C/min). We assume that the rate of temperature decrease depends on the volume of
worm solution and that the temperature in small volume probably decrease rapidly. On
construction of freezing library of mutagenized worms, 200 µl PCR tubes or 96-well plates
were often used to save the space in a freezer. However, our results showed that small
volume of freezing worm solution would result in a large decrease of survival rate. We suggest
that the rate of temperature decrease should be controlled carefully, in order to achieve better
efficiency for isolating deletion mutants from the frozen library with small volume.



Experiment 1 Experiment 2

Volume of
worm solution

Number of
surviving worms

Survival 
rate

100 µl 36.2±15.4 6.9±2.9

500 µl 139.0± 8.3 26.4±1.6

2000 µl 163.7±12.5 31.0±2.4

Volume of
worm solution

Number of
surviving worms

Survival 
rate

100 µl 9.4± 9.6 2.0± 2.0

500 µl 71.9±55.4 15.3±11.8

1000 µl 88.7± 8.0 18.9± 1.7

2000 µl 78.1± 2.4 16.7± 0.5



A Potential Function for the Carboxy-Terminal Domain of SMG-4 as a
Nuclear Export Sequence Regulated by Phosphorylation
Rachel Aronoff

Max Planck Inst. for Medical Research, Jahnstrasse 29, Heidelberg 69120 Germany

Since the identification of smg-4, questions of how the domains of the protein may function to
mediate mRNA surveillance have remained. In spite of the beautiful results with the human
orthologues, hUpf3p and hUpf3-X, showing these nucleocytoplasmic shuttling proteins bind
with Y14 to mRNAs 20nt upstream of exon-exon boundaries [Kim,V. N. et al. (2001)Science
293: 1832-1836, and Lykke-Andersen, J. et al. (2001)Science 293: 1836-1839], and in an RNP
in association with CBP80 help mediate a ’pioneer’ round of translation [Ishigaki Y et al. 
(2001)Cell 106:607-617], the domains responsible for these activities are not yet fully
elucidated. Although overall sequence identity between the worm and human proteins is only
20%, there is 64% sequence similarity over one 336 a.a. stretch, and many potential functional
domains are highly conserved. Interestingly, part of the most conserved domain (Aronoff, R. et
al. (2001) Gene 268:153-164), similar to an RNP-1 -like RNA binding motif and essential for
rescue of smg-4 mutant animals, is spliced out from one variant, hUpf3delta, of the two human
genes. Complex regulation of the encoded protein products is probable.

The proline rich carboxy-terminal domain of SMG-4 is particularly intriguing, with its
alternatively spliced extension and some similarity to a regulatory domain of MAP-4, containing
hallmarks of a substrate for phosphorylation. The recent report of a proline rich domain
responsible for nuclear export that is regulated by phosphorylation [Catez et al. (2002) MCB
22: 1126-1139], caused me to reexamine the SMG-4 sequence. It is clear that sequence
identity (although only 15.5% overall) is shared between the two proteins (see Figure), and
conserved elements include potential MAP Kinase sites. Perhaps when smg-4 is
phosphorylated in this domain, it will be actively exported along with its associated RNP to the
cytoplasm. Whether the virus coopts the mRNA surveillance machinery in its lifecycle is a new
question raised by this apparent similarity.



Figure: Alignment of HSV-1 US11 protein and SMG-4 protein.

If the serine at position 129 of the US11 sequence is mutated to phenylalanine the protein is
retained in nucleoli.



Worm  finance
Leon Avery

Dept of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry
Hines Blvd, Dallas, TX 75390-9148

Hodgkin and Barnes (Proc R Soc Lond B Biol Sci 246(1315): 19-24, 1991) described a weak 
tra-3 mutant that produces 53% more progeny than the wild-type. This large increase in
productivity comes at a price: a 4% increase in the minimum life cycle. The tra-3 mutant
produces sperm for 2.6 hours longer than the wild-type, explaining both the large increase in
average brood size (from 327 to 499) and the small increase (from 64.4 to 67.0 hours) in life
cycle. Once oogenesis begins, progeny are produced at a rate of 5.3 per hour until the sperm
supply gives out.

How can the costs and benefits of a trade-off like this be evaluated? The problem is precisely
analogous to one that arises in the field of corporate finance. Suppose you have a choice
between two investments. Each requires an initial outlay of $1.00. The first (wild-type) will
return $5.30 per hour after a delay of 64.4 hours up to a total of $327. The second (tra-3) will
return $5.30 per hour after a delay of 67 hours, but will continue up to a total of $499. Although
at first glance it appears that tra-3 is the better long-term investment, this conclusion ignores
the time value of money: money received early is more valuable because it can be reinvested
for a profit. (Similarly, a worm hatched early contributes more to population growth than one
hatched later, because in the intervening time the early worm can produce progeny.)

The internal rate of return is used to compare the long-term potential of such investments. If all
receipts are immediately reinvested, the value of the total investment rapidly approaches an
exponential growth steady-state ν = (1 + r) t . Over the long-term an investment with higher r will
outperform an investment with lower r. r is calculated as follows. Each investment is described
as a series of cash flows. For the wild-type these are -$1 at time 0 (negative because it is an
expenditure), $1 at 64.4 h, $1 at 64.6 h, , $1 at 125.9 h. r is then the positive root of the
equation 0 = Σ c i (1 + r) -t i, where c i  is the i th  cash flow and t i  the time at which it occurs. The
doubling time τ2  is ln 2 / ln(1 + r). Financial calculators and spreadsheet programs such as
Excel have built-in functions for calculating IRRs given a series of cash flows. 

The key assumption in this analysis is that returns can be reinvested. In the biological context,
this means that each newly hatched worm has the same opportunities for growth as its parent.
In its natural environment C elegans is generally thought to be r-selected; that is, it competes
on the basis of rapid reproduction in the presence of abundant resources. Under these
circumstances strains with the highest population growth rate will do best. 

The table below gives the growth rates calculated from life history parameters measured by
Hodgkin and Barnes. This analysis predicts that wild-type will outgrow tra-3: the wild type’s 4%
time advantage is more important than tra-3’s 53% yield advantage. Hodgkin and Barnes
measured relative population growth rates in an "eating race" in which the time a population
derived from a single worm required to eat a defined large quantity of food was measured.
Wild-type finished the race in 2.8 ± 0.6 % less time than tra-3, in excellent agreement with the
3.0% difference in predicted doubling times. 



Statistic wild-type tra-3 optimum (201 sperm)
IRR (r) 6.99% hourly6.78% hourly7.09% hourly
doubling time (τ2 )10.25 h 10.56 h 10.13 h

dauers/worm 0.327 0.360 0.306
If there is a trade-off between time and yield, there ought to be an optimum brood size that
produces the maximum internal rate of return. To test this prediction, Hodgkin and Barnes
measured the brood sizes of 15 independent wild isolates. Finding a tight distribution ranging
from 235 to 353, they concluded. "The races appear strikingly similar in self-fertility, despite the
diversity of their geographic origins, suggesting that a brood of about 300 self-progeny is a
universal optimum for this species." Using Hodgkin and Barnes’s measured trade-off rate of 66
sperm/h, I find the optimum brood size to be 201, predicted to grow 1.3% faster than wild-type.
201 is outside the range of normal brood sizes, implying that something is missing from the
analysis. It is possible that life history parameters in the wild are subtly different from those
measured by Hodgkin and Barnes in the lab. However, there is an alternative explanation: that
slower growth provides an advantage when resources become limiting.

Opportunities for extremely rapid growth are brief, both in financial markets and in ecological
niches. For instance, at an hourly growth rate of 7% a single worm would grow to a mass
larger than Alan Greenspan in less than 3 weeks--it is unlikely that a worm ever encounters a
food concentration of that size in the wild. Like a venture capitalist making a rapid growth
investment, r-selected organisms need an exit strategy: a way to recoup the gains of rapid
growth in a form that can be preserved when a recession strikes. For C elegans, this is the
dauer larva. When food runs out, older worms are more valuable than young ones. Eggs and
first-stage larvae are likely to die within a week; second -stage larvae can become dauer
larvae and survive for months: older larvae can become adults, and adults can support the
growth of a new generation by becoming bags of worms, probably to the point where at least
some can become dauer larvae. There are more older worms in a slow-growing population
than a rapidly growing one. Assuming no death among reproductive or prereproductive age
worms, the proportion of the population older than age t is (1 + r) -t . Thus when food runs out, a
slow-growing population has an advantage. To get an idea of the possible magnitude of this
effect, assume eggs and first-stage larvae produce no dauers on starvation, second through
fourth-stage larvae produce one dauer each on starvation, and adults produce 10 dauers on
starvation. The results are in the last row of the table. 

This analysis reveals a second trade-off. A fast-growing organism can exploit resources more
rapidly than a slow-growing one--this is an advantage in direct head-to-head competition for
the same food source. However, a slow-growing population converts growth into lasting
benefits more efficiently, an advantage when opportunities for growth are limited, or when the
population can obtain exclusive access to a resource pool, either by luck or by erecting
barriers to competition. This trade-off results from the greater survivability of older worms.
Although the mechanisms that allow older worms to survive appear at first to be specific
consequences of C elegans physiology and response to starvation, it is plausible that
trade-offs of this type would be common: that mature, stable organisms or investments are
better able to survive an unfavorable environment than young, rapidly growing ones.



A DAF-2 pathway regulates muscle protein degradation by antagonizing
Ras-Raf-MEK-MAPK signaling
Nate Szewczyk, Brant Peterson, Sami Barmada, Leah Parkinson, Lew Jacobson

Department of Biological Sciences, Univ. of Pittsburgh, Pittsburgh PA 15260

We have been using the non-myofibrillar myosin::ß-galactosidase fusion protein produced by 
ccIs55(unc-54::lacZ) to "report" on protein degradation in muscle. This protein is stable in
well-fed wild-type animals, but its degradation is induced by starvation, by acute disruption of
cholinergic signaling (e.g., cha-1(p1182 ts ) animals) [1], or by activation of the Ras-MAPK
pathway either directly (e.g., let-60(ga89 ts ) [2]) or indirectly (clr-1(e1745 ts ) activation of
EGL-15 FGFR). Protein degradation induced by starvation or denervation is distinct from
Ras-induced degradation on three grounds: (a) Reduction-of-function mutations in mek-2
(MEK) or mpk-1 (MAPK) suppress Ras-induced but not starvation/denervation-induced
degradation; (b) Proteasome inhibitors block starvation/denervation-induced but not
Ras-induced degradation; (c) The nAChR agonist levamisole blocks
starvation/denervation-induced but not Ras-induced degradation.

Because of the well-known effects of insulin and Insulin-like Growth Factor (IGF) in promoting
protein anabolism in mammalian muscle, we have now explored a possible role in muscle for
the signaling pathway downstream of the DAF-2 IGFR homologue. We find that well-fed 
daf-2(e1370 ts ) or (m41 ts ) animals degrade the pre-existing reporter protein when shifted to
nonpermissive temperature. Specifically, animals grown until mid-adulthood at 16°C and then
shifted to 25°C showed a time-dependent loss of reporter activity and protein. Similarly,
reporter degradation was observed when age-1(hx546 ts ) mutants were shifted to 25°C or
when wild-type animals were treated with the PI-3-kinase (AGE-1) inhibitor LY-290042 [3]. This
protein degradation appears to utilize pre-existing signaling cascades and proteases,
inasmuch as degradation can still be triggered after treatment with the protein synthesis
inhibitor cycloheximide.

The expression of age-1+  in muscle is known to affect lipid storage [4]. We infer that AGE-1
affects muscle protein degradation by intra-muscular action, because expression of age-1+

from the unc-54 promoter (constructs kindly provided by C. Wolkow & G. Ruvkun) is sufficient
to block protein degradation in the muscles of age-1 null-mutant animals. Protein degradation
induced by daf-2(m41 ts ) or LY-294002 is also prevented when the downstream signaling
pathway is activated by either (a) a daf-18 reduction-of-function mutation that permits
accumulation of the AGE-1 product PtdIns-P3 ; or (b) gain-of-function mutations pdk-1(mg142)
or akt-1(mg144). However, the reduction-of-function mutation pdk-1(sa709) is not sufficient to
trigger protein degradation, suggesting either that PDK-1 can activate AKT-1 but is not
required for AKT-1 activation, or that sa709 mutants retain sufficient PDK-1 function to activate
AKT-1. Thus, IGFR-PI3K-(PDK)-Akt signals oppose protein degradation in muscle. In contrast
to the way this pathway functions in controlling dauer larva formation, here the target of AKT-1
is not the forkhead-class transcription factor DAF-16, since degradation in LY-294002-treated
animals is not blocked by the loss-of-function mutation daf-16(mgDf50).

What is the relevant target of AKT-1 action in muscle? Inhibitory phosphorylation of
mammalian Raf by Akt has been reported [5], the mutation of presumptive Akt phosphorylation
sites in LIN-45 Raf affects vulval development [6], and we had noted a low-frequency MuV
phenotype in daf-2(m41) animals. These observations prompted us to test if the
Ras-Raf-MEK-MAPK pathway was the target of negative regulation by the IGFR-PI3K-Akt
pathway in worm muscle. Indeed, we found that reduction-of-function mutations soc-2(n1774), 
lin-45(sy96), mek-2(ku114) or mpk-1(n2521) suppressed protein degradation in response to



LY-290042 treatment, but let-60(n2021) did not. Conversely, increased activity of the DAF-2
pathway is sufficient to block protein degradation induced by EGL-15 activation (clr-1(e1745 ts ); 
daf-18(e1375) animals). Thus, our results suggest that DAF-2 signals via AGE-1, PDK-1 and
AKT-1 to inhibit LIN-45 Raf and protein degradation in muscle. They also imply that in normal
adult muscle there is incoming signal to Raf, passed to subsequent steps in the cascade only
when the balancing Akt inhibition of Raf is released.

Does the DAF-2 pathway affect the response to starvation? We find that starvation-induced
reporter protein degradation is normal in daf-2(e1370 ts ) animals grown at 20°C then shifted to
25°C at the onset of starvation. However, the same mutants grown from L3 on at 25°C are at
least partially resistant to reporter degradation in response to starvation at 25°C. These
observations appear to reflect the excess lipid storage in daf-2 mutants at 25°C. We have
noted in wild-type that the onset of protein degradation about 8 hr. after starvation corresponds
approximately to the time required to exhaust stored lipid in the intestine (by Sudan Black
staining). Furthermore, we observed normal starvation-induced protein degradation in 
age-1(hx546 ts ) animals grown at 20°C to adulthood then starved at 25°C, and in wild-type
animals treated with LY-290042 from the time of starvation. We infer that DAF-2 signaling does
not directly regulate muscle proteolysis in response to starvation. 

[1] Szewczyk, Hartman, Barmada & Jacobson, J. Cell Sci. 113:2003-2010 (2000)
[2] Szewczyk, Peterson & Jacobson, Mol. Cell. Biol. (in press)
[3] Babar, Adamson, Walker, Walker & Lithgow, Neurobiol. Aging 20:513-519 (1999)
[4] Wolkow, Kimura, Lee & Ruvkun, Science 290:147-150 (2000)
[5] Zimmermann & Moelling, Science 286:1741-1744 (1999)
[6] Chong, Lee & Guan, EMBO J. 20:3716-3727 (2001)



C. elegans SEK-1 MAPKK regulates locomotion by functioning downstream
of UNC-43 CaMKII
Miho Tanaka-Hino, Naoki Hisamoto, Kunihiro Matsumoto

Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku,
Nagoya 464-8602, JAPAN

C. elegans UNC-43, the type II Ca2+  and calmodulin-dependent protein kinase (CaMKII), acts
upstream of the NSY-1 MAPKKK-SEK-1 MAPKK-MAPK pathway to establish asymmetric cell
fate decision in olfactory AWC neuron (Sagasti et al., 2001; Tanaka-Hino et al., 2002). UNC-43
also regulates several other neuronal functions including locomotion. In fact, the unc-43(gf)
gain-of-function causes severe Unc phenotype. Although the GOA-1/EGL-30 heterotrimeric G
protein network is involved in UNC-43-mediated regulation of locomotion, other components
acting downstream of UNC-43 in the pathway are still unknown. We have determined whether
the SEK-1 MAPKK is also involved in the UNC-43 locomotory function. In contrast to 
unc-43(gf) single mutants, unc-43(gf);sek-1(lf) double mutant animals exhibited almostly
normal movement pattern. Thus, the sek-1 loss-of-function mutation can suppress the
movement defect of unc-43(gf). Next, we examined the effect of the activated sek-1 mutation 
(sek-1-STDD; Tanaka-Hino et al., 2002) on the locomotion. When sek-1-STDD was expressed
by the jkk-1 promoter (Kawasaki et al., 1999) in N2 wild-type animals, they showed severe Unc
phenotype similar to unc-43(gf). This Unc phenotype was suppressed by the goa-1(lf) 
mutation. These results suggest that SEK-1 functions downstream of UNC-43 and upstream of
GOA-1 to regulate proper movement.

Kawasaki M., Hisamoto N., Iino Y., Yamamoto M., Ninomiya-Tsuji, J., Matsumoto, K. A 
Caenorhabditis elegans JNK signal transduction pathway regulates coordinated movement via
type-D GABAergic motor neurons. EMBO J., 18: 3604-3615 (1999).

Sagasti, A., Hisamoto, N., Hyodo, J., Tanaka-Hino, M., Matsumoto, K., Bargmann, C. I. The
CaMKII UNC43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required
for asymmetric olfactory neuron fates. Cell, 105: 221-232 (2001).

Tanaka-Hino, M., Sagasti, A., Hisamoto, N., Kawasaki, M., Nakano, S., Ninomiya-Tsuji, J.,
Bargamnn, C. I., Matsumoto, K. SEK-1 MAPKK mediates Ca2+  signaling to determine
neuronal asymmetric development in C. elegans. EMBO Rep., 3: 56-62 (2002).



C. elegans p38 MAPK cascade mediates arsenical stress response
Hideki Inoue1 , Miho Tanaka-Hino1 , Makoto Fukuda2 , Eisuke Nishida2 , Naoki Hisamoto1 ,
Kunihiro Matsumoto1

1Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku,
Nagoya 464-8602, JAPAN

2Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto
University, Sakyo-ku, Kyoto 606-8502, Japan

Arsenic is one of the heavy metals that are harmful to living organisms and is known to induce
multiple stress responses. It has been reported that arsenic selectively activates p38 MAP
kinase (MAPK) in mammalian cultured cells, but the relationship between p38 and arseical
resistance in muticellular organisms remained to be determined. To address this, we have
studied the role of the p38 MAPK pathway on arsenical-induced cellular response in C. 
elegans as a model system. In wild-type N2 worms, sodium arsenite strongly induced
activation of C. elegans p38 PMK-1. RNAi of pmk-1 lowered the resistance of animals to
arsenite. Thus, p38 MAPK is involved in arsenical stress response. Recently, we have
identified SEK-1 MAPKK which functions upstream of PMK-1 (Tanaka-Hino et al., 2002).
Consistent with this, PMK-1 activation in response to arsenical stimulus was lost in sek-1 null
mutants and the sek-1 mutant animals were hypersensitive to sodium arsenite. The SEK-1
MAPKK regulates asymmetrical development of AWC neurons by acting downstream of
UNC-43 CaMKII and NSY-1 MAPKKK (Sagasti et al., 2001;Tanaka-Hino et al., 2002). In nsy-1
loss-of-function mutants arsenite-induced activation of PMK-1 partially decreased and the
mutant animals showed partial sensitivity to sodium arsenite. However, the unc-43
loss-of-function mutation had any effects on neither PMK-1 activation nor sensitivity induced by
arsenic treatment. Taken together, these results suggest that the NSY-1-SEK-1-p38 MAPK
pathway regulates arsenical stress response in a manner independent of UNC-43.
Furthermore, in this pathway other MAPKKK(s) may function upstream of SEK-1 MAPKK
redundantly with NSY-1.

Sagasti, A., Hisamoto, N., Hyodo, J., Tanaka-Hino, M., Matsumoto, K., Bargmann, C. I. The CaMKII UNC-43 activates the
MAPKKK NSY-1 to excute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell, 105: 221-232 
(2001).

Tanaka-Hino, M., Sagasti, A., Hisamoto, N., Kawasaki, M., Nakano, S., Ninomiya-Tsuji, J., Bargmann, C. I., Matsumoto, K.
SEK-1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in C. elegans. EMBO Rep., 3:
56-62 (2002).



A JNK/UNC-16 signaling complex regulates synaptic vesicle localization
through a conventional kinesin in C. elegans
Rie Sakamoto1 , Masato Kawasaki1 , Dana Thyra Byrd2 , Yishi Jin2 , Naoki Hisamoto1 , Kunihiro 
Matsumoto1

1Division of Biological Science, Graduate School of Science, Nagoya University, and CREST,
Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, JAPAN

2University of California, Santa Cruz, Dept. Biol., Sinsheimer Labs, CA 95064 USA

The c-Jun N-terminal kinase (JNK) of the MAP kinase (MAPK) superfamily is involved in
various stress responses and apoptosis in mammal. The C. elegans JNK cascade is
composed of JNK-1 (MAPK) and JKK-1 (MAPKK). The JNK-1 pathway functions in type-D
GABAergic motor neuron and modulates coordinated locomotion. The C. elegans unc-16 gene
encodes a protein homologous to mammalian JSAP1/JIP3, which acts as a scaffold protein in
the JNK pathway by binding with MLK (MAPKKK), MKK7 (MAPKK) and JNK3 (MAPK). Like
JSAP1/JIP3, UNC-16 physically interacts with JNK-1 and JKK-1, forming a JNK signaling
module. unc-16(ju79), jnk-1(gk7), and jkk-1(km2) mutant animals exhibit mislocalization of
synaptic vesicle marker SNB-1::GFP in L1 DD motor neurons. This suggests that the JNK-1
pathway containing UNC-16 regulates synaptic vesicle localization.

To understand the mechanism regulated by UNC-16, we screened for UNC-16-binding
proteins using yeast two-hybrid system. One of the isolated genes is klc-2 encoding a kinesin
light chain. Co-immunoprecipitation experiments reveal that KLC-2 associates with UNC-16
and UNC-116 kinesin heavy chain when they are co-expressed in mammalian cells. We
constructed the klc-2(km11) mutation that produces a truncated form of the KLC-2 protein
lacking its C-terminal portion. The mutant animals exhibit Unc and weak Dpy phenotypes.
Similar to unc-16(ju79), jnk-1(gk7), and jkk-1(km2) mutants, the SNB-1::GFP marker is
mislocalized along the dorsal DD processes in the klc-2(km11) L1 larvae. These results raise
the possibility that the UNC-16-JNK-1 pathway regulates synaptic vesicle localization through
phosphorylation of KLC-2 in C. elegans.



atp-2 Controls Development in a Cell Nonautonomous Manner
William Y. Tsang, Bernard D. Lemire

Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.

The growth and development of an organism are energy-dependent and rely on the
mitochondrial respiratory chain (MRC) as the major source of ATP. The MRC is made up of 5
protein complexes, and its biogenesis requires the coordinate expression of genes from both
the nuclear and the mitochondrial genomes. A defective MRC has been implicated in a wide
variety of human diseases including diabetes, myopathies, neuromuscular and heart diseases. 

We are developing the nematode, Caenorhabditis elegans as a model system for studying
mitochondrial diseases. We have previously isolated a MRC mutation in the atp-2 gene
encoding the active site ß subunit of the ATP synthase. The ua2 mutation is a deletion and is
homozygous lethal: atp-2(ua2) animals hatch and develop through 2 larval stages before
arresting at the L3 stage.

We are performing mosaic analysis to determine whether losses of the wild type atp-2 gene in
certain cells or tissues can prevent development beyond the L3 stage. We have generated
several strains of the genotype atp-2(ua2); svDp1{sDp3[atp-2(+)]-svEx12[unc-4(+)-sur-5::gfp]} 
(svDp1 is a gift from Dr. S. Tuck). Mosaic animals are identified by screening plates for
candidates with less intense fluorescence as observed in the dissecting microscope. They are
then examined with the compound microscope to identify the exact nature of their losses. We
have mainly focused on early duplication losses (i.e. losses in the AB, ABa, ABp, P1 , P2 ,
EMS, E, MS, C, and D(P3 ) lineages; the sur5::gfp reporter is not expressed in the germ line,
which is derived from P3 ). Animals with a loss in one or more of the AB, ABp, P1 , P2 , EMS,
MS, C and D(P3 ) precursor cell all arrest at L3, whereas a loss in either ABa or E gives rise to
both L3 arrested and L4/adult worms. Our data suggests that atp-2 controls development cell
nonautonomously and may be involved in the production or the regulation of a global,
developmental signal required for the L3-to-L4 transition.



Analysis  of cdh-3 upstream regulatory region to find sequences necessary
for expression
Stephen T. Sewell, Guojuan Zhang, Helen M. Chamberlin

Department of Molecular Genetics, Ohio State University, Columbus, OH 43210

EGL-38 is a Pax transcription factor important for the development of several organs in C. 
elegans, including the hindgut. Two genes are known to act downstream of egl-38: lin-48 and 
cdh-3. Genetic studies indicate that lin-48 and cdh-3 are part of two separate pathways. The
two genes also function differently, as LIN-48 is responsible for the specification of cell fates,
while CDH-3 coordinates development and epithelial morphogenesis1,2 . Previous studies have
shown that lin-48 is a direct target for EGL-383 . To investigate whether cdh-3 might also be a
target of EGL-38, we have characterized its upstream regulatory sequence.

In comparison studies between C. elegans and C. briggsae, we found that there are five
domains of consensus sequence within a 1000bp region upstream of the start ATG of cdh-3.
We chose to focus on these areas, reasoning that these were the most likely spots for protein
binding. We constructed clones including different amounts of upstream sequence driving
expression of the green fluorescent protein (gfp) and injected them into animals to study their 
expression.

From this data (Table 1), we found that two regions are important for expression of cdh-3 in the
seam cells and hindgut cells. Deletion of the region between 677 and 555 eliminated
expression in the seam cells and deletion of the region between 555 and 526 eliminated
expression in both seam cells and the cells of the hindgut. To confirm the function of these two
regions, we generated point mutations in the reporter gene with the 824bp upstream sequence
(Table 2). A clone with a mutation in the more distal site (pSS1) was not expressed in seam
cells but maintained hindgut expression. In contrast, clones with a mutation in the more
proximal site (pSS20) or in both sites (pSS21) were not expressed in either cell type. This
indicates that the proximal element is important for expression in both cell types. 

GATA-binding factors have been shown to play a role in seam cell development4,5 , and the
distal region contains a block of sequence conserved between C. elegans and C. briggsae that
includes a GATA sequence motif. In contrast, although EGL-38 plays a role in cdh-3 hindgut
expression, the conserved sequence in the more proximal 555-526 region does not resemble
the binding site for Pax proteins. Thus we suspect the relationship between egl-38 and cdh-3 is 
indirect.

1Pettit et al., 1996 Development

2Chamberlin et al., 1999 Genetics

3Johnson et al., 2001 Development

4Page et al., 1997 Genes and Development

5Koh and Rothman, 2001 Development

Table 1



Upstream
sequence in
clone (bp)

Expression in
hindgut (F+U 
cells)

Expression in
seam cells

n

824 66.5% 96% 82

677 48.5% 65% 95

555 64% 0% 58

526 0% 0% 33

467 0% 0% 31

Table 2

clone Expression in 
hindgut

Expression in
seam cells

n

pSS1 84% 3% 37

pSS20 0% 0% 38

pSS21 0% 0% 38



Functional  and comparative studies of Pax-2/5/8 genes in Caenorhabditis 
elegans and Caenorhabditis briggsae
Xiaodong Wang1 , Vandana Rajakumar2 , Helen M.Chamberlin1,2

1Department of Molecular Genetics and 2Program in MCDB, Ohio State University,
Columbus, OH 43210.

Pax transcription factors play an important role in organ development in animals. Pax factors
are subdivided into four subclasses based on sequence similarity and the presence of other
sequence motifs. In C . elegans there are five Pax genes with one member for three of the
subclasses but two Pax 2/5/8 members: egl-38 and K06B9.5 (1).Although these two genes are
highly similar in their coding region and bind similar DNA targets (2) they are not functionally
redundant. egl-38 is essential for viability, and mutations can disrupt development of distinct
organs, including the hindgut and the egg-laying system (3). We hypothesize that the unique
functions of egl-38 and K06B9.5 result from differences in expression pattern between the two 
genes.

To test this idea, we have investigated the expression pattern of K06B9.5. We generated
reporter transgenes by tagging the 3’end of K06B9.5 with gfp. We found that these transgenes
express in two cell types: The PVC neurons in the tail and the D cells of the vulva (vulD). To
confirm that the vulD expression is specific to cell type rather than position, we have crossed
the K06B9.5::gfp transgenes into vulval lineage mutants (Table 1). In wild type two vulval cells
express K06B9.5::gfp, with one vulD produced from each of the 2°  lineages of P5.p and P7.p.
In lin-15 mutants we frequently observe additional ectopic expression coincident with cells that
produce ectopic 2°  lineages. In addition, the expression in P7.p-derived cell is missing or
misplaced in some lin-17 mutants consistent with the expected lineage defects. Using a
deletion analysis, we have localized sequences important for vulD expression to 150bp of the 
K06B9.5 promoter. Prelimenary RNAi experiments indicate that both egl-38 and K06B9.5 are
affected by double-stranded RNA from either gene. Currently we are trying to study the
function of K06B9.5 alone by expressing sense and antisense RNA under the control of 
K06B9.5 promoter and tagging K06B9.5 with the activator VP16, and with the engrailed
repressor domain.

To better understand the relationship between egl-38 and K06B9.5, we have isolated the 
Pax-2/5/8 family gene from C . briggsae and found that there is only one copy of this gene in
this species. This result is confirmed by the recent completion of the C . briggsae genome
sequence. A sequence comparison between the genes between C . elegans and 

C . briggsae indicate that C . elegans egl-38 and K06B9.5 are more similar to each other than
to the C . briggsae Pax-2/5/8 gene, suggesting egl-38 and K06B9.5 result from a gene
duplication subsequent to the divergence of the C . elegans and C . briggsae lineages. We
have generated a GFP reporter transgene for the C . briggsae Pax-2/5/8 gene. In the larva,
this transgene is expressed in two tail neurons (PVC), two neurons in the head, uterine and D
cells in the vulva. Characterization of embryonic expression is ongoing. RNAi of this gene in 
C.briggsae showed defects in egg-laying, hindgut, tail morphology and a low level of larval 
lethality.

Table 1



Genetic

background

No of vulval cells expressing K06B9.5::GFP transgene

0 1 2 3 4

N2 (Wild 
Type)

  30   

lin-15(n309)   4 19 3

lin-17(n671)  3 20 + 
5  a

  

a  Two cells express but P7.p derived cell is misplaced.

References :
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2.  Czerny,T., Bouchard,M., Kozmik,Z and Busslinger,M (1997) Mechanisms of Development

67 : 179-192
3.  Chamberlin, H.M., Palmer, R.E., Newman, A.P., et al (1997) Development 
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Like  in C. elegans, Many GATA Factors in C. briggsae are in Redundant 
Groups
Morris F. Maduro, Joel H. Rothman

Dept. MCD Biology and Neuroscience Research Institute, UC Santa Barbara, Santa Barbara,
CA 93106

A surprising finding from studies of the C. elegans GATA factors has been that most occur in
functionally overlapping pairs. The ectodermal GATAs ELT-5/EGL-18 and ELT-6 share
overlapping function (Koh and Rothman, 2001). The GATAs MED-1,2 specify MS and E fates,
END-1,3 specify E fate, and ELT-2 and ELT-7 elaborate intestinal fate in the E descendants.
The availability of genome sequences for C. briggsae has enabled us to identify all the GATA
factors predicted to be encoded by its genome, and in particular ask whether any are found in
similar pairs as in C. elegans.

The elt-2 and elt-7 genes have clear homologs (McGhee lab, K. Strohmaier and J.R,
unpublished). The putative elt-5/egl-18 and elt-6 homologs are adjacent genes transcribed in
the same direction, just as they are in C. elegans. We have identified a similar pair of MED-like
GATA factors in C. briggsae that both appear to be encoded by a single, intronless ORF, and
which both have putative SKN-1 binding sites just 5’ to the coding region (properties similar to
the C. elegans genes). Like Ce-med-1, a transgene reporter of Cb-med-1 is expressed in the
early EMS lineage in C. elegans. Unlike Ce-med-1,2, which are on separate linkage groups, 
Cb-med-1 and -2 are adjacent to one another in an inverted, divergently-transcribed
orientation. As expected from an independent, recent origin of each duplication, the predicted 
Ce-med-1,2 and Cb-med-1,2 gene products are more similar within each species than
between them. The results with end-1 and end-3 were similar. The end-3 gene in C. elegans is
located ~30 kbp to the right of end-1. In C. briggsae, however, there are two  end-3 homologs a
similar distance away from a single end-1 homolog. Like Cb-med-1,2, the two end-3-like genes
are adjacent, in inverted orientation and divergently transcribed. RT-PCR analysis confirmed
that Cb-end-1 and the two Cb-end-3 genes are expressed, while cross-species transgene
rescue and heat shock experiments in C. elegans shows that these genes are expressed in
the E lineage, and can specify endoderm fate. Therefore, the regulation of the end genes, and
the activity of their gene products, has been conserved. The high degree of sequence identity
between the two C. briggsae end-3 homologs suggests that they arose from a recent
duplication, while the intra-species divergence between the end-1,3 genes suggests that they
arose from a much earlier event. We conclude that among the entire suite of C. elegans and C. 
briggsae GATA factors, redundancy via gene duplication arose multiple times both before and
after the C. elegans/C. briggsae evolutionary split.



EGL-32 may be a Sperm Protein that Regulates Egg Laying though the
TGF-b Pathway
Marie McGovern, Ling Yu, Cathy Savage-Dunn

Dept of Biology, Queens College, CUNY, Flushing, NY 11367

A TGF-b related signaling pathway regulates dauer larval development and egg laying in C. 
elegans. Mutations in daf-7 ligand, daf-1 type I receptor, daf-4 type II receptor, and daf-8 and 
daf-14 Smads result in Dauer-constitutive/Egg-laying defective animals (1). These mutations
are suppressed for both defects by mutations in daf-3 and daf-5 (2). We are interested in the
role of this pathway in egg laying. Two other genes that affect egg laying, egl-4 and egl-32, are
also implicated in this pathway by their suppression by daf-3 and daf-5 (3). Mutations in egl-4
also have a weak Dauer-constitutive phenotype (4). Mutants of egl-32 are the only known
mutants to be suppressed by daf-3 and daf-5 that are Egg-laying defective, but not
Dauer-constitutive. 

Mutants of egl-32 retain about twice as many eggs as wild type animals: 30 instead of 14.
Experimental evidence suggests that EGL-32 is a sperm protein that regulates egg laying in C. 
elegans. It has 3 close homologs, all of which are found in C. elegans. EGL-32 and its 3
closest homologs have been shown to be highly expressed in sperm (5). egl-32(n155) is a
temperature sensitive mutation. Temperature shift assays reveal that L4 is the critical stage for
EGL-32 inactivation. The L4 stage does not correspond to the time when eggs are laid, but
when hermaphrodites produce sperm. Furthermore, the introduction of wild type sperm, by
mating, into egl-32 animals results in a reduction in the number of eggs retained, and an
increase in the number of eggs laid. The introduction of egl-32 sperm into wild type animals, by
mating, causes wild type animals to lay fewer eggs and retain more eggs, many of which are at
the comma stage or later. 

It has previously been described that meiotic maturation and ovulation in C. elegans is
regulated partially by sperm (6). In female mutants, oocytes fail to undergo meiotic maturation
and sheath cell contraction, which is necessary for ovulation, is irregular (7). Introduction of
sperm, by mating, causes oocytes to complete maturation and sheath cells to begin to contract
regularly, allowing ovulation. It has recently been found that the major sperm protein (MSP)
supplies the signal for oocyte maturation and ovulation (6) in C. elegans. It is possible that a
mechanism also exists to coordinate the time of fertilization with the time of egg laying to
insure that eggs are not laid too soon or too late. It is possible that this mechanism functions
either directly or indirectly through the TGF-b pathway. Further experiments will be done to test
this hypothesis. 

1.Savage-Dunn C, Cytokine and Growth Factor Reviews, 12, 2001
2.Patterson G.I.., Koweek A., Wong A., Liu Y. and Ruvkun G, Genes Dev. 11, 1997.
3.Trent C., Tsung N. and Horvitz H.R, Genetics. 104, 1983.
4.Daniels S.A., Ailion M., Thomas J.H. and Sengupta P, Genetics 156, 2000.
5.Reinke V., Smith H.E., Nance J., Wang J., Van Doren C., Begley R., Jones S.J.M., Davis
E.B., Scherer S., Ward S., Kim S.K, Molecular Cell 6, 2000. 
6.Miller M.A., Nguyen V.Q., Lee M., Kosinski M., Schedl T., Capriolo R.M. and Greenstein D.
A, Science 291, 2001. 
7.Strome S, J Cell Biol. 103, 1986.



Evidence  for constitutive reduction of insulin/ IGF signalling in males
Diana McCulloch, David Gems
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When maintained in isolation to prevent attempted mating, N2 males live ~20% longer than
hermaphrodites (1). Solitary male but not hermaphrodite lifespan is further enhanced by a
range of uncoordinated (unc) mutations. It was first proposed that this was because these
mutations prevented life-shortening behaviour, even in solitary males (1). We have since
found, however, that the male unc lifespan effect is limited to neuronal unc mutations and is
not seen in muscle uncs (10 mutants tested, data not shown). Thus, many defects affecting the
nervous system retard ageing in males but not hermaphrodites. 

One possibility is that this reflects sex differences in the neuroendocrine regulation of ageing.
Dauer formation is regulated by interacting genetic pathways, involving insulin/IGF signalling
(IIS) and TGF-beta signalling, with a parallel and/or regulatory cGMP component. Dauer
constitutive (Daf-c) mutations in the IIS pathway increase adult lifespan, while those in the
TGF-beta/ cGMP pathways do not. Wild-type males form dauers more readily than
hermaphrodites in response to dauer pheromone (2), as do several Daf-c mutants (3). Could it
be that wild-type males are both longer-lived and more likely to form dauers than
hermaphrodites because IIS is constitutively reduced in males? We investigated whether (a)
the male bias to dauer formation and (b) the intrinsic male longevity were dependent on IIS.
For this we looked at dauer formation and lifespan ratios of the two sexes in a range of IIS,
TGF-beta and cGMP mutants. 

(a) Dauer formation:  Progeny from mated hermaphrodites were raised at a temperature that
gave a mix of dauers and non-dauers. The sex of non-dauers and recovered dauers was
scored, and the overall ratio of male: hermaphrodite dauer formation was determined (Table).

Strain Temp 
(o C)

MH
dauer 
ratio

N* Strain Temp 
(o C)

MH
dauer 
ratio

N*

N2 25 1.20 309 
(1)

daf-4(m592)b 22.5 2.60 2453 
(3)

daf-2(m41)a 20 0.82 2486 
(3)

daf-1(m40)b 22.5 4.89 469 
(1)

daf-2(e1370)  a 22.5 1.04 1116 
(2)

daf-8(m85)b 17 9.53 1031 
(1)

daf-2(e1365)  a 22.5 0.48 2644 
(2)

daf-11(m47)c 15 1.67 209 
(1)

daf-2(e1368)  a 22.5 0.49 4421 
(2)

daf-16(mgDf50); 
daf-1(m40)ab

22.5 3.26 3596 
(2)

pdk-1(sn709)  a 26 0.66 858 
(2)

* Number of worms scored (number of trials); a IIS mutant; bTGF-beta mutant; ccGMP/
TGF-beta mutant



There was a marked male bias to dauer formation in wild type, as previously seen (2), as well
as in the TGF-beta and cGMP mutants. However, either no bias or a hermaphrodite bias was
observed in IIS mutants. This indicates that the increased tendency of males towards dauer
formation is dependent on IIS. However, when partial dauer formation was measured in a 
daf-16; daf-1 double mutant, the male bias as seen in dauer formation by the daf-1 single
mutant was only slightly reduced. This implies that a complex interplay of IIS and TGF-beta
signalling may be involved. 

(b) Survival analysis:  When lifespan was measured under identical conditions (monoxenic
liquid culture) for daf-2 and daf-16 mutants, the increased N2 male longevity was no longer
apparent, with hermaphrodites living slightly longer than males (data not shown). The
increased male longevity still remained in pdk-1(sn709), however. These results suggest that
increased male longevity is dependent on daf-2 signalling via daf-16, but that this might not act
via pdk-1.

Altogether, these results are consistent with a constitutive reduction of IIS in males, leading to
increased dauer formation and longevity.

(1) Gems, D, Riddle, DL (2000) Genetics 154: 1597. (2) Ailion, M, Thomas, JH (2000) 
Genetics 156: 1047. (3) Vowels, JJ, Thomas, JH (1992) Genetics 130: 105.



The superoxide dismutase mimetic EUK-8 shortens lifespan
Michelle Keaney, David Gems

Department of Biology, University College London, WC1E 6BT, UK

If the free radical theory of aging is correct, augmentation of antioxidant defenses should retard
ageing and increase lifespan. Yet over the years, studies of administration of antioxidants to
model organisms have not generally fulfilled this prediction. By contrast, a recent report
demonstrated that synthetic catalytic antioxidants increase lifespan in C. elegans, on average
by 44% (1). The antioxidants used were the salen manganese compounds EUK-8 and
EUK-134 which have superoxide dismutase (SOD) activity in vitro and in vivo. The effect was
seen over a 0.05 - 10 mM range, and was not dose dependent. These findings provide robust
support for the view that free radical damage is a primary cause of ageing.

Hoping to use EUK-8 as an experimental tool to investigate mechanisms of ageing, we tested
its effect on lifespan in C. elegans. EUK-8 was obtained from the same source as the Melov et 
al. study (Eukarion Inc., Bedford, MA, USA), and also from the Dept. of Pharmacy and
Biological Science, University of Brighton, UK (R.G. Faragher and F. Fucassi). We examined
the effect on lifespan of 0.05mM, 0.5mM and 5mM EUK-8, using methods as described (1).
Worms were maintained in monoxenic liquid culture, either singly in 50-70µl of S medium
containing an E. coli concentration of 5 x 108 /ml - 1 x 109cells/ml, in 96 well microtitre plates;
or in groups of approximately 20 in shallow plate culture. Medium was replenished at 2-3 day
intervals. We examined effects on N2 hermaphrodites (2 trials, 661 animals) and males (2
trials, 132 animals), and nulliparous fog-2(q71) females (3 trials, 389 animals). In the case of
the N2 hermaphrodite studies, the E. coli OP50 stock used was newly obtained from the 
Caenorhabditis Genetics Center. 

In all trials we observed a dose-dependent reduction in longevity. For example, in a
representative trial using N2 hermaphrodites, mean lifespans (20oC) were as follows: Control,
20.0±0.6 days; 0.05mM EUK-8, 20.6±0.5 days; 0.5mM, 14.7±0.4 days; and 5.0mM, 3.8±0.1
days (average sample size per test, 84 animals; range 72-100). We also measured the effect
of EUK-8 on fertility in self-fertilizing hermaphrodites. As previously seen (1), no major
reduction in fertility resulted from treatment with 0.05mM or 0.5mM EUK-8 (progeny numbers:
control, 159±36 [S.D.], N=54 broods counted; 0.05mM, 151±38, N=56; 0.5mM, 143±33, N=61;
when animals are raised from hatching liquid culture, brood sizes are reduced relative to those
of animals maintained on agar plates). However, in 5mM EUK-8 brood size fell to 14±7 (N=11)
(figures are means from four separate trials).

Thus, in our hands, EUK-8 did not increase lifespan, but rather, proved to be mildly toxic. It
remains unclear whether the failure of EUK-8 to increase lifespan is because a) increased
SOD activity does not retard ageing in C. elegans; b) EUK-8 does not have SOD activity in C. 
elegans; or c) EUK-8 is not taken up by worms (however, the dose-dependent reduction of
lifespan seen suggests that EUK-8, or a derivative of it, is entering the worms). One possibility
is that EUK-8 is inactivated by E. coli. With this in mind, we tested the effect of EUK-8 on
axenically cultured N2 hermaphrodites (2). However, under these conditions a similar
dose-dependent shortening of lifespan was seen. Mean lifespans for a representative trail are:
Control, 33.8±0.8 days; 0.05mM EUK-8, 33.5±0.7 days; 0.5 mM, 24.8±1.1 days; and 5.0mM,
5.5±0.3 days (2 trials, 288 animals; note that culture in axenic medium increased lifespan, as
previously observed). Thus, the toxicity of EUK-8 is not the result of an unusual interaction
between EUK-8 and E. coli. 



The reason for the differences between our results and those previously reported remain
unclear. Our findings will only be fully interpretable when it is known whether administration of
EUK-8 to C. elegans results in increased intracellular SOD levels, and protection against
superoxide. 

1. Melov, S., et al. Science 289, 1567 (2000). 2. Vanfleteren, J.R., et al. J. Gerontol. 53, B393 
(1998).



Instructive  roles of LIN-44/Wnt in the regulation of cell polarity
Hitoshi Sawa, Hisako Takeshita

Laboratory for Cell Fate Decision, CDB, Riken, Kobe 650-0047, Japan

Asymmetric cell division is a fundamental mechanism to produce cellular diversity during
development. To divide asymmetrically, mother cells must have polarities. In C. elegans,
polarities of mother cells are often regulated by wnt genes. In early development, a polarity of
the EMS blastmere is regulated by mom-2/wnt (1, 2). During postembryonic development,
polarities of V5 and T cells are regulated by egl-20/wnt and lin-44/wnt, respectively (3, 4). In 
egl-20 and lin-44 mutants, polarities of the V5 and T cell divisions, respectively, are often
reversed. egl-20 and lin-44 are expressed posteriorly to their target cells (4, 5). We have
previously proposed that LIN-44 activates LIN-17/Frizzled receptor at the posterior but not
anterior side of the T cell to give them a posterior directed polarity (6). The polarity reversal
phenotype in lin-44 mutants could be caused by an unidentified signal (wnt?) expressed
anteriorly to the T cell. If the hypothesis is correct, posterior expression of wnt must be
important. However, Whangbo et al. showed that ectopic expression of egl-20 in pharynx can
rescue the polarity reversal of V5 in egl-20 mutants, suggesting that egl-20 has only
permissive roles in the regulation of the V5 cell polarity (3). To examine this is also the case for 
lin-44, we expressed lin-44 similarly in pharynx using the myo-2 promoter to find that it did not
affect the T cell phenotype in lin-44 mutants. Because pharynx may be too far from the T cell,
we next expressed lin-44 just anterior to the T cell using the egl-5 promoter (expressed in cells
around the rectum). Surprisingly, the polarity reversal phenotype in lin-44 mutants was
enhanced from 71% to 97 % by the egl-5::lin-44 transgene. The results show that the T cell
can recognize direction of the LIN-44 signal, and strongly suggest that LIN-44 instructs
direction of cell polarity. 

(1) Thorpe et al. Cell 90, 695-705 (1997).

(2) Rocheleau et al. Cell 90, 707-16 (1997). 

(3) Whangbo et al. Development 127, 4587-98 (2000)

(4) Herman et al. Cell 83, 101-110 (1995).

(5) Whangbo & Kenyon , Mol Cell 4, 851-855 (1999).



(6) Sawa et al. Genes Dev 10, 2189-2197 (1996).



An attempt to slow aging in C. elegans. 24. No positive effect of
streptomycin with ascorbic acid
Vladimir V. Bakaev1,2

1Box 45, Novosibirsk, 630107, Russia
2E-mail: bakaev@online.nsk.su

The purpose of this study was to investigate the effect of different concentrations of
streptomycin sulphate in presence of ascorbic acid (concentration 1:104 ) in water  solutions 
on the nematode life span in reproductive period.  In this experiment streptomycin sulphate 
was  used  in  following dilutions: 1:101 , 1:102 , 1:103 , 1:104 , 1:105 ,  1:106  and 1:107 . Three
adult animals (3 - 5 days old) were kept in microtitre wells containing  0.5 ml of liquid  medium 
(with E. coli and without ascorbic acid) during 4 hours,  then they  were  discarded and
newborn larvae were transferred in next wells (without streptomycin sulphate in medium) every
day  (one  worm in one well) beginning from third day. Then,  from 3th to 10th day, these
worms were transferred every day  in next wells containing medium with streptomycin sulphate
in any concentration.  This investigation was carried out in temperature +21°C and  in  
the darkness.

The obtained results are presented in the following table.

Concentration of streptomycin sulphate n Longevity (days)
Mean±S.E.Maximal

Control 1212.8±1.1 18
1:103 1213.7±0.7 21

1:104 1214.0±0.6 23

Conclusion: If streptomycin sulphate solution in presence of ascorbic acid was applied to C. 
elegans,  it  was not able to increase significantly (P>0.05) their mean longevity in comparison
with control.

Acknowledgment: The  author  wishes to express his thanks to CGC for providing C. elegans
(Bristol, N2) and E. coli OP50.



An attempt to slow aging in C. elegans. 25. No positive effect of
atorvastatin calcium
Vladimir V. Bakaev1,2

1Box 45, Novosibirsk, 630107, Russia
2E-mail: bakaev@online.nsk.su

The purpose of this study was to investigate the effect of  atorvastatin calcium  in
water solutions  on the nematode life span.  In this experiment atorvastatin calcium  was  used 
in  following dilutions:  1:104 , 1:105 ,  1:106 , 1:107 and 1:108 . Three adult animals (3 - 5 days
old) were kept in microtitre wells containing  0.5  ml of liquid  medium  (with E. coli and without 
atorvastatin calcium) during 4 hours,  then they were  discarded  and newborn larvae were
transferred in next wells (without atorvastatin calcium in medium) every day  (one worm in one
well) beginning from third day. Then,  from 3th to 10th day, these worms were transferred
every day  in next wells containing medium with atorvastatin calcium in any concentration. 
This investigation was carried out in temperature +21°C and  in  the darkness.

The obtained results are presented in the following table.

Concentration of atorvastatin calcium n Longevity (days)
Mean±S.E.Maximal

Control 1220.33±1.91 27
1:104 1220.42±1.84 28

1:105 1220.35±1.87 27

1:106 1220.25±1.70 28

1:107 1218.50±1.46 28

1:108 1221.50±1.70 27

Conclusion: If atorvastatin calcium solution was applied to C. elegans,  it  was not able to
increase significantly (P>0.05) their mean longevity in comparison with control.

Acknowledgment: The  author  wishes to express his thanks to CGC for providing C. elegans
(Bristol, N2) and E. coli OP50.
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